Vis enkel innførsel

dc.contributor.authorChrysostomou, Eleni
dc.contributor.authorFlici, Hakima
dc.contributor.authorGornik, Sebastian G.
dc.contributor.authorSalinas-Saavedra, Miguel
dc.contributor.authorGahan, James Michael
dc.contributor.authorMcMahon, Emma T.
dc.contributor.authorThompson, Kerry
dc.contributor.authorHanley, Shirley
dc.contributor.authorKilcoyne, Michelle
dc.contributor.authorSchnitzler, Christine E.
dc.contributor.authorGonzalez, Paul
dc.contributor.authorBaxevanis, Andreas D.
dc.contributor.authorFrank, Uri
dc.date.accessioned2023-03-31T09:10:25Z
dc.date.available2023-03-31T09:10:25Z
dc.date.created2022-10-05T08:57:54Z
dc.date.issued2022
dc.identifier.issn2050-084X
dc.identifier.urihttps://hdl.handle.net/11250/3061358
dc.description.abstractNeurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.en_US
dc.language.isoengen_US
dc.publishereLifeen_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttps://creativecommons.org/publicdomain/zero/1.0/*
dc.titleA cellular and molecular analysis of SoxB-driven neurogenesis in a cnidarianen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.articlenumbere78793en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.7554/eLife.78793
dc.identifier.cristin2058626
dc.source.journaleLIFEen_US
dc.identifier.citationeLIFE. 2022, 11, e78793.en_US
dc.source.volume11en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

CC0 1.0 Universal
Med mindre annet er angitt, så er denne innførselen lisensiert som CC0 1.0 Universal